mme.modares.ac.ir
1
* 2
3
3
1 -
2 -
3 -
* 143951374
[email protected]
: 17 1393
19 :
1394 1394 07 :
.
k- SST
. .
. .
. .
.
Numerical investigation of sonic jet injection effects on flow field structure and thrust vector control performance in supersonic nozzle
Mojtaba Tahani
1*Mohammad Hojaji
2Mohammad Salehifar
1Arash Dartoomian
1- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
2- Aerospace Sciences and Technologies Institute, Tehran, Iran.
*P.O.B. 143951374 Tehran, Iran, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 06 February 2015 Accepted 09 May 2015 Available Online 28 June 2015
Effects of secondary sonic jet injection in divergent part of supersonic nozzle on flow field structure and thrust vector control performance has been numerically analyzed. Three dimensional multi-blocks extended numerical code has been used to model the complexity of turbulence flow by k- SST model. Structured computational domain has been applied and the initial results of simulation were validated by the previous experimental result. Different injection power is generated by varying the injection surface and pressure ratio with respect to throat pressure. Injection power increment causes changes in performance and sometimes lowers it. In the current research, aside from description of complete complex flow features, allowable power range to increase system performance has been presented. In this range, increasing the injection mass flow rate decreases the amplification factor, but increases the deflection angle and axial thrust augmentation as the most important performance parameters. Out of estimated range for allowable mass power injection performance parameters behave differently, which demonstrates drastic drop in performance.
Keywords:
Thrust Vector Control Sonic Jet Injection Turbulent Flow Supersonic Nozzle
1 -
1
1- Thrust Vector Control (TVC)
. 1
2
:
3
2- Multi nozzle 3- Movable Nozzle
1
.
2 3. 1960
- .
43 80
7 12 37
53
] 1 [.
4
. .
5
1949 1952
] 2 [.
.
1963
6] 3 [ .
. . 1964
7
] 4 [ . 1964
] 5
8
[ .
( )
.
1965 ]
6 [ .
9
1
1- Interaction Methods
2- Secondary injection Methods
3- Secondary Injection Thrust Vector Control 4- Hot Gas Injection
5- A.E. Wetherbee 6- Blast Wave Theory 7- Linearized Theory 8- Blunt Body Model 9- Unconventional Methods
.
.
. 1991
] 7 [ . .
2002 ]
8 [ .
K-
10.
2006 ]
9 [ .
.
.
] 10 [ 2012
.
11
.
K_2013 ]
11 [ .
2 5/
3 5/
0 2
3
.
K-
.
12 13
2010 ]
12 [ .
10- Algebraic Bladwin-Lomax 11- ICEM
12- Bow shock 13- Reflection Shock
.
2014 ]
13 , 14 [ .
2015
] 15 [ .
SST
1
.
.
. .
.
SST K-
2 -
-
) 1 ( ]
16 [.
) 1 (
J z H y
G x
F t
U
*
*
*
*
*
*
*
*
) .
2 - 5 (
] 17 , 18 [.
) 2 (
*
*
*
* 2
*
*
*
*
*
*
*
*
*
*
*
) 2 / (
k V e
w v u U
1- Vectoring
) 3 (
* *
*
*
* *
*
*
*
* *
* *
* *
*
*
*
*
* *
*
*
* *
*
*
* *
*
*
*
*
*
*
]) [
xx k xx
x xz xy
xx xz xy
xx
k u
k u
q w
v u
p E u
u w
u v
p u u
u
F
) 4
*
(
*
*
*
* *
*
*
*
* *
* *
* *
*
*
*
* *
*
*
*
* *
*
*
*
* *
*
*
*
*
*
] [
yy k yy
y yz yy
yx
yz yy yx
k k
q w
v u
p E
v w v
p v v
v u
v
G
) 5 (
* *
*
* *
*
*
* *
* *
* *
*
*
*
*
* *
*
*
*
* *
*
*
* *
*
*
*
*
*
*
*
] [
zz k zz
z zz zy
zx
zz zy zx
w k w
q w
v u
p E w
p w w
w v
w u
w
H
) 6 (
) 6 (
( + +
) 7 (
) 7 ( d
Q dS
F F d
t W (
C V)
AUSM
2.
3
.
. AUSM
.
FLUENT
. AUSM
) 8 (
) 8 ( P
F
F
C. ]
417 [ .
2- Advection Upstream Splitting Method 3- Convection Fluxes
4- Godunov
.
1
.
) 9 (
) 9 (
S
d S d
) 10 (
) 10 (
S S
S d j yd
y
S d i xd
x
ˆ· 1 1
ˆ· 1 1
.
2. )
11 (
) 11 (
( )
=
( )
=
( )+ Res
( ), = 1,2, . .
( )
=
( )) 11 (
. .
.
) 12 (
] 17 [.
) 12 (
= ( + + ) + ( + + )
. )
13 (
) 13
=
·
+(
) 14 (
) 14
= max( 4 (
3 , )( + ) ( ) 2003 ]
19 [.
.
1- Van-Albada Limiter 2- Rung Kutta
.
)
(
. )
15 (
] 17 [.
) 15 (
D p i
i
Q Q D x u
t ( ) ( ~ )
k- SST )
16 - 18 (
) 16 ) (
||
||
,
max(
1 2 21
V Curl f
a
k a
T
) 17 (
k x S
k k x
x u
t k
ijijF j T k l j i
i
)
*) ((
) ( ) (
) 18 ( )
) ((
) ( ) (
j T l
j i
i
u x x
x t
j j j j ij
F ij
T
x x
f k
C S
21
2
2 ( 1 )
) 20 19 (
) tanh(arg
14f
1) 19 (
4 ) 500 ), 09 ,
. min(max( 0
arg
1 2 22d CD
k d
d k
k l
) 20 (
= max(2 , 10 )
. ) 21 (
) 21 ( )
tanh(arg
22f
2500 ) 09 ,
. 0 max( 2
arg
2 2d d
k
l] 18 [ k_ SST
) 22 (
) 22
2
(
1 1
1
( 1 f )
f
) 23 (
) 23 ( k
S
S 1
ijF ij *x x f k
C S
S
ijF ijT
2 1
2
2 ( 1 )
2
. ) n+1 24 (
) 24 (
= +
] 18 [ -
) 25 26 (
) 25 (
2
*
( ) k S k
Q
k ijF ij) 26
x (
x f k
C S
Q
ijF ijT
2 1
2
2 ( 1 )
) 27 (
) 27 (
2 0
0 2
) , (
*
k Q
] 18 [
) 28 ( . W
) 28 (
= + Neg W
Neg( ) = , < 0
0, > 0
1
.
= = =
3 -
. 80 - 90
] 9 [ .
] 11 [.
1 -
2 -
3 - )
) 29 (
1- Ghost Cells
) 30 ( . ) 31 (
) 29 ( TR =
) 30 (
K = =
) 31 (
ATA = =
) 32 - 35
. (
] 20 [
. -
) 32 (
= = ( { } d d
+ )/
) 33 (
= = ( { } sin d d )
/
) 34 (
= = ( { } cos d d )
/
) 35 ( k = [ ]
.
1 ]
7, 10 [
2
3
1
3000 K 1.0
9.2 MPa
2
3
UDMH
1) 2
.(
4 - 4
.
.
.
. 5
. 3
.
2
)
Mw300 (
Pr
9/
28 25 /1 0002
/0 7/
0 5/
1
4
1- Unsymmetrical Dimethyl Hydrazine
5
X . Y
4 6
7
. 6
.
7
3
x y z
75 115
646875
85 140
1011500
100 160
1600000
6
7 .
50
)
(
.
. 4
5 -
.
5 - 1 -
.
. 8
4
TVC
ATA TR
k
031 /0 052
/0 83
/0
039 /0 06
/0 01
/1
042 /0 064
/0 06
/1
7 8
. .
9
) PUV
1( )
SUV
2(
.
. 10
) SDV
3PDV
4(
9 )
1- Primary Upstream Vortex 2- Secondary Upstream Vortex 3- Secondary Downstream Vortex 4- Primary Downstream Vortex
. .
1
) ( DSB
) 11 .(
2 3 4
. .
.
. )
36 (
12 )
10
11
1- Downstream Separation Bubble 2- Under expanded Jet
3- Leeside 4- Windward
( .
) 36
= 0.5 (
. .
12 )
( .
. .
5
. 13
. Z
5 - 2 - .
. 9
( ) 5
025 /0 05 /0 08 /0 1/
0 12 /0
. .
.
) 37 (
) 37 ( Mr =
14
12
5- Counter Rotating Vortex Pair
13 . 5
10 15
14
. ] 3, 7 [.
1
.
1- shock impingement
] 9 [ . .
15 .
) 7
( .
2
] 18 [ . .
] 18 [ .
50
. .
.
15
2- Super Diffuse
. 0/
1
5 50
/0 75 /0 0/
1
25 /1 50 /1 .
16
.
17
.
18 19
. 0/
1
16
17
18
. .
.
.
.
.
20
19
20
70
6 -
. .
. 0/
1
07 /0 .
.
7 -
ATA Cp ) SST
(
Isp Mr
Mw
Pr PR
TR
y+
) SST
( k
) SST
( k
) SST
(
8 -
[1] G. P. Sutton, O. Biblarz, Rocket Propulsion Elements Wiley, 2001.
[2] A. Noorolahi, Liquid Injection Thrust Vector Control and its Effective Parameters Energetic Materials Research and Development, Vol. 1, 2008.(In Persian)
[3] J. E. Broadwell, Analysis of thefluid mechanics of secondary injection for thrust vector control, AIAA Journal, Vol. 1, No. 5, pp. 1067-1075, 1963. [4] M. Shandor, R. Walker, Influence of injectant properties for fluid
injection thrust vector control, Journal of Spacecraft and Rockets, Vol. 1, No. 4, pp. 409-413, 1964.
[5] F. Spaid, E. Zukoski, Secondary injection of gases into supersonic flow, AIAA journal, Vol. 2, No. 10, pp. 1689-1696, 1964.
[6] R. D. Guhse, An Experimental Investigation of Thrust Vector Control by Secondary Injection DTIC Document, pp. 1965.
[7] R. Balu, A. Marathe, P. Paul, H. Mukunda, Analysis of performance of hot gas injection thrust vector controlsystem, Journal of Propulsion and Power, Vol. 7, No. 4, pp. 580-585, 1991.
[8] H. Ko, W.-S. Yoon, Performance analysis of secondary gas injection into conical rocket nozzle, Journal of propulsion and power, Vol. 18, No. 3, pp.
585-591, 2002.
[9] E. Erdem, Thrust vector control by secondary injection Thesis, The Graduate School Of Natural And Applied Sciences, Middle East Technical University, Turky, 2006.
[10] L. P. Raj, P. Rejith, R. Balu, Numerical Simulation of Hot Gas Injection Thrust Vector Control System Performance, Procedia Engineering, Vol.
38, pp. 1745-1749, 2012.
[11] V. Zmijanovic, V. Lago, L. Leger, E. Depussay, M. Sellam, A. Chpoun, Thrust vectoring effects of transverse gas injection into supersonic cross flow of an axisymmetric convergent-divergent nozzle, EUCASS Proceedings Series–Advances in AeroSpace Sciences, Vol. 4, pp. 227-256,
2013.
[12] M. H. Hashem Abadi, M;, Aerodynamic Design Algorythm of Liquid Injection Thrust Vector Control, Aerospace Sciences and Researches, Vol.
2, No. 2, 2010. (In Persian)
[13] M. hojaji, M. Tahani, M. Salehifar, A. Dartoomian, Performance Analysis of Secondary Injection Thrust Vector Control, in The 1st International and 3rd National Conference of Irainain Aerospace Propultion Association Iran, 2014. (In Persian)
[14] M. Salehifar, A. Dartoomian, M. hojaji, M. Tahani, Comparison of 2D and 3 Analysis of Secondary Injection Thrust Vector Control, in The 8th Student Conference on Mechanical Engineering Iran, 2014. (In Persian) [15] M. H. Hamedi, M. Jahromi, M. Mahmodi, J. Pirkandi, Effects of Secondary
Flow Injection Area on Thrust Vectoring Angle in Double Throat Nozzles, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 117-125, 2015. (In Persian)
[16] J. C. Tannehill, D. A. Anderson, R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor Francis, Washington, DC, 1997.
[17] J.Blazek, Computational Fluid Dynamics: Principles and Applications:
Principles and Applications Elsevier, 2001.
[18] D. C. Wilcox, Turbulence modeling for CFD :DCW industries La Canada, CA, 1998.
[19] F. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence, heat and mass transfer, Vol. 4, No.
1, 2003.
[20] M. J. Zucrow, J. D. Hoffman, Gas dynamics 1976.